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Abstract

We present a simple method for rendering Islamic star
patterns based on Hankin’s “polygons-in-contact” tech-
nique. The method builds star patterns from a tiling of
the plane and a small number of intuitive parameters.
We show how this method can be adapted to construct
Islamic designs reminiscent of Huff’s parquet deforma-
tions. Finally, we introduce a geometric transformation
on tilings that expands the range of patterns accessible
using our method. This transformation simplifies con-
struction techniques given in previous work, and clari-
fies previously unexplained relationships between certain
classes of star patterns.
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1 Introduction

Islamic star patterns represent one of the world’s great
ornamental design traditions [2, 6, 7]. Star patterns are
a harmonious fusion of mathematics, art, and spirituality,
and expressions of symmetry, balance, and ingenuity.

Star patterns also embody an enduring mathematical
mystery. Most of the original design techniques are lost
to history, and we are forced to probe the minds of an-
cient artisans and mathematicians via the patterns they
left behind. Many scholars and hobbyists have discov-
ered or rediscovered techniques that produce Islamic pat-
terns [1, 9, 11, 20].

This paper presents a simple technique based on Han-
kin’s “polygons-in-contact” method [12]. Given a tiling
of the plane, Hankin’s method produces an Islamic star
pattern based on that tiling (Section 3). By modifying
the construction slightly, we are able to construct designs
in the style of Huff’s parquet deformations [16, Chap-
ter 10] (Section 3.1). Finally, we show how an operation
on tilings called the “rosette transform” can expand the
range of patterns available using Hankin’s method (Sec-
tion 4). The rosette transform demonstrates the power of
Hankin’s method, and formalizes previously unexplained
relationships between certain classes of star patterns.

2 Previous work

Our approach follows most directly from recent work by
Kaplan and Salesin [18]. They construct designs by fill-
ing tiles in a tiling with fragments of star patterns. For
tiles that are regular polygons, they give a parameterized
space of “design elements” drawn from historical exam-
ples. They then complete the pattern by filling irregular
polygons using an “inference algorithm”. Because their
construction is independent of Euclid’s parallel axiom,
they can draw star patterns seamlessly in Euclidean and
non-Euclidean geometry. We simplify their approach by
eliminating design elements and applying an inference al-
gorithm uniformly to all tiles. We can still produce com-
plex elements such as rosettes by moving more informa-
tion into the underlying tiling. There is a large overlap in
the designs produced by the two systems – given suitable
tilings, Najm could reproduce all the star patterns pre-
sented here. But this paper offers insights into the tilings
that underlie star patterns, and provides a technique that
is simpler and easier to control.

Jay Bonner is an architect who has studied Islamic star
patterns extensively. In an unpublished manuscript [3],
Bonner gives a systematic presentation of star patterns
developed over a vast space of tilings (which he calls
“polygonal sub-grids”). Some of the techniques from the
book also appear in a recent paper [4]. Bonner’s work is
intended as a resource for designers, and not specification
for software writers. He draws patterns manually using a
CAD tool. This paper is in part an attempt to formalize
the algorithms that underlie his technique, and to express
those algorithms in software for architects, designers, and
artists.

3 The polygons-in-contact method

A tiling-based approach to Islamic star patterns seems
first to have been articulated in the west by E.H. Han-
kin in the early part of the twentieth century. In a series
of papers [12, 13, 14, 15], he explains his discoveries and
gives many examples of how the technique can be used.
Hankin’s description of his technique provides an excel-
lent starting point for an algorithmic approach (and helps
drive contemporary work by Bonner).



In making such patterns, it is first necessary
to cover the surface to be decorated with a net-
work consisting of polygons in contact. Then
through the centre of each side of each poly-
gon two lines are drawn. These lines cross each
other like a letter X and are continued till they
meet other lines of similar origin. This com-
pletes the pattern [12, Page 4].

Since that time, scholars such as Lee [19] and
Critchlow [8] have referred to Hankin’s “polygons-in-
contact” technique. This method immediately suggests
an algorithm for turning a tiling into an Islamic star pat-
tern. Given a tiling of the plane by polygons (Hankin’s
“network”), we identify the midpoints of the edges of the
tiling as “contact points” where the design will be born.
We place a small X at every contact point and “grow” the
arms of the X until they encounter lines growing from
other contact points. There is one obvious degree of free-
dom in this process: the angle formed by the arms of the
X with the edge from which they emanate. We call this
angle thecontact angleof the pattern. An illustration is
given in Figure 1(a).

We can regard this process as growing a small arrange-
ment of lines for each unique tile shape in a tiling. We
grow a pair of rays, forming half an X, inward from the
midpoints of the tile’s edges. We call the arrangement
of lines associated with a single tile itsmotif. An imple-
mentation of this construction technique should accept a
tiling and a contact angle as input, build a motif for each
tile shape, and assemble the motifs into a pattern that can
then be decorated.

Given ann-sided polygonal tile and a contact angle,
we must develop a motif from the2n rays entering that
tile through its edge midpoints. A successful motif will
partition the rays into pairs, where each matched pair rep-
resents a distinct path through the tile. The best possible
motif will be the pairing of rays that optimizes a chosen
aesthetic goal. We choose the simple goal of minimiz-
ing the sum of the lengths of all of the line segments in
the motif. This goal reflects the sense of economy and
inevitability in Islamic design, and is justified through
many historical examples.

Ideally, then, we would iterate over all possible pair-
ings of rays, and find the one that minimizes total length.
Unfortunately, this algorithm is not practical – there are

n!
(n/2)!2n ways to partition2n rays into pairs, or over half
a billion possibilities for a region with 10 sides.

Instead we use a greedy approach, based on a sim-
plified version of Kaplan and Salesin’sinference algo-
rithm [18]. We consider all possible pairs of rays. If two
rays

−−→
AB and

−−→
CD intersect at a pointP , we store that pair

in a collection together with a cost equal to the sum of the

(a) (b)

Figure 1: In the first step of Hankin’s method, a pair of
rays is associated with every contact position on every
tile. In (a), a single contact position gets its two rays,
each of which forms the contact angle θ with the edge.
In (b), we separate the ray origins by distance δ.

Figure 2: A demonstration of Hankin’s method. On the
left, contact points sprout an X-shaped arrangement of
rays that grow until they meet other rays. When the orig-
inal tiling is removed, the result is the pattern on the right.

lengthsAP andPD. If the rays are collinear and point
towards each other, we store the pair together with the
lengthAD. We can then sort the collection by cost and
walk over it in order. For each pair of rays, we incorpo-
rate that pair’s path into the motif provided neither of the
rays has yet been used.

In practice, this algorithm performs well on a wide
variety of polygons. It certainly performs perfectly on
regular polygons, where it constructs star-shaped motifs.
It sometimes produces motifs with unmatched rays, and
sometimes paths that venture too far from the underlying
tile. In the cases where it fails, it usually does so not be-
cause it is greedy, but because the pairing technique is not
well-suited to the tile shape in question. In some cases,
the inferred motif can be improved by moving the contact
points away from the edge midpoints. This adjustment is
discussed in greater detail in Section 4.

Figure 2 illustrates the process of growing rays from
contact positions. Figure 3 shows some typical designs
that can result from using our implementation of Han-
kin’s method.



(4.82) θ = 22.5◦ θ = 45◦ θ = 67.5◦

(4.6.12) θ = 45◦ θ = 60◦ θ = 75◦

(3.4.3.12; 3.122) θ = 35◦ θ = 60◦ θ = 75◦

Altair θ = 30◦ θ = 45◦ θ = 72.5◦

Figure 3: Examples of star patterns constructed using Hankin’s method. Each row shows a tiling together with three
designs that can be derived from it using three different contact angles. The bottom row features an amusing tiling by
nearly regular polygons. It is reproduced from Grünbaum and Shephard [10, Page 64], where it serves as a reminder
of the danger of over-reliance on figures. A related design also appears in Bourgoin [6, Plate 163].



(a) (b)

(c) (d)

Figure 4: A demonstration of two cases where an ex-
tension to the inference algorithm can produce a slightly
more attractive motif. In (a), a star pattern is shown with
large unfilled areas that were the centers of regular do-
decagons in the original tiling. Adding a layer of inferred
geometry to the inside of the motif produces the improved
design in (b). The process is repeated with a different
tiling in (c) and (d).

There are some cases where simple modifications to
the basic inference algorithm can improve the generated
motif. Consider, for example, the star pattern given in
Figure 4(a). This pattern contains large regions, derived
from regular dodecagons, that are left unfilled. A more
attractive motif can be constructed using a second pass of
the inference algorithm, building inward from the points
where the rays from the first pass meet. The resulting
design, shown in Figure 4(b), is more consistent with tra-
dition. In the inference algorithm, it is easy to recognize
when the provided tile shape is a regular polygon and to
run the second round of inference when specified by the
artist. Kaplan and Salesin [18] solve this problem by pro-
viding a more explicit parameterization of the range of
motifs that can be used to fill regular polygons.

A further enhancement is to allow the contact position
to split in two, as shown in Figure 1(b). The split can be
accomplished by providing the inference algorithm with
a second real-valued parameterδ that specifies the dis-
tance between the new starting points of the rays. The
parameterδ can vary from zero (giving the original con-
struction) up to the length of the shortest tile edge in the

Figure 5: Examples of two-point star patterns constructed
using Hankin’s method. Each row shows a template
tiling, a star pattern with δ = 0, and a related two-point
pattern with non-zero δ. The structure of the tiling in the
bottom row will be explained in Section 4.

tiling. This modification gives what Bonner calls “two-
point patterns,” a set of designs that are historically im-
portant in Islamic art [3]. Examples of two-point patterns
constructed using theδ parameter are shown in Figure 5.
The designs corresponding to two-point patterns tend to
be made up of very short closed strands, each one forming
a loop around a single tiling vertex in the original tiling.
The contact angle is typically chosen to be45◦, forming
squares around the midpoints of the tiling’s edges.

3.1 Islamic parquet deformations
Parquet deformations are a style of ornamental design
created by William Huff, and later popularized by Dou-
glas Hofstadter [16, Chapter 10]. They are a kind of “spa-
tial animation,” a geometric drawing that makes a smooth
transition in space rather than time. Parquet deforma-
tions are closely related to M.C. Escher’sMetamorphosis
prints [5, Page 280], though unlike Escher’s work they
are purely abstract, geometric compositions.



Figure 6: Islamic parquet deformations based on Hankin’s method. The top diagram shows the effect of continuously
varying the contact angle of a ray depending on the horizontal position of the ray’s starting point. When the process is
carried to all other tiles, the design in the middle emerges. In this design, the contact angle varies from a minimum of
22.5◦ at the sides up to 67.5◦ in the middle. In the design on the bottom, the contact angle varies from 36◦ at the sides
up to 72◦ in the middle.

By exploiting Hankin’s method, we can introduce a
new style of Islamic design that we call “Islamic parquet
deformations”. We simply modify the inference algo-
rithm so that the contact angle varies along a line. The
contact angle for a ray is chosen according to a function
of a horizontal position of that ray’s start position. In
this way, the four rays leaving a given contact position
still form an X, even though the contact angle may vary
within a single tile.

Smooth variation of the contact angle results in a gen-
tly changing geometric design that is still recognizably
Islamic (see Figure 6). We believe that these parquet de-
formations occupy an interesting place in the world of Is-
lamic geometric art. The structure is recognizably in the
Islamic tradition, but they would not have been produced
historically because very little repetition is involved. The
effort of working out the constantly changing shapes by
hand and then executing them would have tested the pa-
tience of any erstwhile artisan.

4 The rosette transform

A curious property of Hankin’s polygons-in-contact
method is that different tilings may give rise to the same

star pattern under suitable choices of contact angle. The
pattern in the top row of Figure 7 is one example. It can
be produced from the tiling on the left using a contact an-
gle of 54◦, or from the tiling on the right using a contact
angle of36◦. We might therefore suspect a relationship
between the two tilings.

Further evidence for this relationship can be found in
the star patterns produced by the Najm system of Kaplan
and Salesin [18]. The bottom row of Figure 7 shows a
tiling on the left with “rosette” motifs placed in regular
decagons. Kaplan and salesin provide an explicit param-
eterization of these rosettes. But the right hand side of
the figure demonstrates that the same pattern can arise
via inference alone from the ostensibly related tiling.

Our experience with Hankin’s method suggests that
there are many pairs of tilings that are related in this
way. Referring to Figure 7, we call the tiling on the left a
“Najm tiling” and the tiling on the right a “Hankin tiling”.
The two have similar structure, except that in the Hankin
tiling the large regular polygons are separated by rings of
potentially irregular polygons, usually pentagons.

In his manuscript [3], Bonner uses both kinds of tilings
to create star patterns, and he too observes that a single



Figure 7: Examples of distinct tilings that can produce the same Islamic design. In each case, the tilings on the left is
filled in using a combination of design elements and inference, and the tiling on the right uses inference alone. They
meet in the shared design in the center.

design may originate from multiple tilings. In this sec-
tion we introduce a transformation on tilings called the
“rosette transform” that explains the connection between
Najm tilings and Hankin tilings. We also compare our
method to Najm in terms of the patterns each approach
can produce.

The algorithm for the rosette transform is reminiscent
of the inference algorithm used in Section 3. Given a
tiling, it constructs a planar map for each distinct tile
shape. The planar maps are then assembled, this time into
a new tiling rather than a final design. It is also a kind of
dualization: the most common operation is to erect per-
pendicular bisectors to edges in the original tiling. The
map for each tile shape is constructed in one of two ways.

Regular polygons. If the tile is a regularn-gonP of
radiusr with five or more sides, then the map is con-
structed as in Figure 8. We build a new regularn-gonP ′

with radiusr′ < r and place it concentric with the origi-
nal polygon but rotated byπ/n relative to it. We then add
line segments connecting the vertices ofP ′ to the edge
midpoints ofP. The inner radiusr′ is chosen so that the
length of each of these new segments is exactly half of the
side length ofP ′. Some trigonometry shows that givenn
andr, the correct value ofr′ is given by

r′ = r

(
cos

π

n
− sin

π

n
tan

(
π(n− 2)

4n

))
The map returned isP ′ together with the segments

joining it to the edge midpoints ofP.
Irregular polygons. If the tile is a polygonP that does

not satisfy the conditions above, we extend perpendicular
bisectors of the sides ofP towards its interior, as shown
in Figure 9. The bisectors are truncated where they meet
each other. The result becomes the map for this tile.

This step is similar in spirit to running the inference

algorithm with a contact angle of90◦ and is subject to the
same pitfalls. We do not expect it to return a meaningful
answer for every possible polygon, but in the cases of
polygons that occur in Najm tilings, the map it discovers
is usually appropriate.

Some heuristics also work here that do not apply in the
inference algorithm. One moderately successful heuristic
is to consider the intersection points of all pairs of rays
and to cluster those points that lie inside the tile. Each
cluster can then be averaged down to a single point that
all rays contributing to that cluster can use as an endpoint.
This adjustment may move some rays away from perpen-
dicularity, introducing “kinks” in the middles of edges of
the transformed tiling. We can correct this problem later
by detecting the kinks and replacing them with straight
line segments.

When this algorithm is run on Najm tilings, it tends
to produce Hankin tilings. For instance, the two tiles in
Figures 8 and 9 correspond to the Najm tiling on the left
hand side of Figure 7. The rosette transform produces the
Hankin tiling on the right hand side of the figure. Two
additional examples of tilings and their rosette transforms
are given in Figure 10.

The rosette transform takes the intelligence out of Ka-
plan and Salesin’s “design elements” and embeds it in the
tiling. Suppose that in a given tiling, Najm is used to fill
a regular polygonP with a rosette. In the rosette trans-
form of that tiling, a scaled-down copyP ′ of P will be
surrounded by a ring of irregular pentagons. With our
method, these pentagons will conspire to form the hexag-
onal arms of a rosette around a central star constructed
insideP ′. The rosette transform is motivated by (and
named after) the goal of making the pentagons as close
as possible to regular, producing rosettes that are nearly
ideal in the sense given by Lee [19].



Figure 8: The rosette transform applied to a regular poly-
gon. Here, a regular 10-gon of radius r is filled with
a smaller regular 10-gon of radius r′ together with seg-
ments that join the vertices of the inner polygon to the
edge midpoints of the outer one. The inner radius is cho-
sen so that the marked edges have the same length.

Figure 9: The rosette transform applied to an irregular
polygon. On the left, a perpendicular bisector is drawn
for every tile edge as a ray pointing to the interior of the
tile. The rays are cut off when they meet each other, as
with the inference algorithm.

In some cases, Hankin’s method generates an unsat-
isfactory pattern when applied to a rosette-transformed
tiling. Figure 11 shows an example where Hankin’s
method discovers the topology of the correct pattern, but
produces uneven rosettes. Bonner discusses how to cor-
rect this situation by adjusting the contact positions on the
pentagons away from the centers when necessary. How-
ever, he gives no indication of when or how to carry out
this adjustment.

We can appeal to the relationship between tilings and
their rosette transforms to resolve this mystery. The de-
sign of Figure 11(a) was constructed using the Najm
method. We choose rosettes to fill the regular octago-
nal tiles. By design, the hexagonal arms of the rosettes
(two of which are shown shaded in the diagram) contact
the edges of their surrounding octagons.

In Figure 11(b), the rosette arms are formed from the
ring of pentagons introduced in the rosette transform. The
construction of one such pentagon is shown in Figure 12.
The problem is that segmentsAE andBE have differ-
ent lengths. If we simply place contact positions at edge
midpoints, then the contact positions along edgesAB
andCD will not be equidistant from the center of their
adjacent octagon, producing an uneven arrangement of

Figure 10: Two demonstrations of the rosette transform.
The transformed tiling is shown superimposed in bold
over the original.

(a) (b)
Figure 11: An example where Hankin’s method can pro-
duce imperfect rosettes. In (a), Najm is used to place
perfect rosettes inside regular octagons. When Hankin’s
method is used on the rosette transform in (b), the rosette
hexagons (shown shaded) are of two different sizes.

Figure 12: An illustration of the adjustment to contact po-
sitions that recovers perfect rosettes in Hankin’s method.
The horizontal line indicates the midpoint of the edge of
the shaded tile in the rosette transform. But the correct
location for the contact point is the intersection of that
edge with the edge of the original tiling.

rosette arms. Although the shaded pentagon is topologi-
cally dual to the vertex it contains, it is not dually situated
(its edges are not bisected by the original tiling). We cor-
rect the discrepancy by recording the intersection points
of the rosette transform with the original tiling, and using
them as contact positions.



Figure 13: A decorated star pattern produced using the
polygons-in-contact method.

Thus there a deep connection between these two kinds
of tilings, which can expose the logic behind what may
have seemed like an arbitrary but essential adjustment.
Furthermore, these revised contact positions can be cal-
culated easily while the rosette transform is computed.

5 Implementation

We have implemented the approach described in this pa-
per as a standalone Java application. The application’s
interface shows a tiling with a corresponding Islamic star
pattern superimposed on it. The user is able to select
the tiling to work with and modify the contact angleθ
and distanceδ used to produce two-point patterns. They
can also choose whether to incorporate a second pass of
the inference algorithm in large, regular polygons, and
whether to adjust the contact positions away from the
edge midpoints as described at the end of Section 4. All
of these changes are reflected in the design interactively,
making it easy and enjoyable to browse a wide range of
star patterns. When the user has decided upon a design,
they can render it using the decoration styles first devel-
oped for Taprats [17]. A decorated pattern is shown in
Figure 13.

Our current software handles only periodic tilings
(though there is no such limitation in the underlying tech-
nique). A tiling is represented by two translation vectors
and a collection of untransformed polygons. Each poly-
gon holds a list of transformations that map it to its oc-
curences in a single translational unit. This information
is sufficient to cover any region of the plane with a subset
of the tiling. In the interactive designer, planar maps rep-
resenting motifs are associated with the tile shapes and
drawn with them. A standalone Java application can be
used to construct periodic tilings by hand. The user can
create regular polygonal tiles and snap them together, fill

Figure 14: A classic Islamic star pattern that cannot eas-
ily be expressed using a combination of Hankin’s method
and the rosette transform.

Figure 15: An unusual star pattern, reproduced from Bon-
ner’s manuscript, featuring 11- and 13-pointed stars.

in irregular holes with new tiles, and specify translation
vectors. Another program accepts a periodic tiling as in-
put, and computes its rosette transform.

The construction of Islamic parquet deformations re-
quires many separate invocations of the inference algo-
rithm, and is currently too slow to run interactively. It is
implemented as a command-line application that builds a
design from parameters specifying the bounding box and
contact angle range.

6 Future work

Despite the power of the Hankin’s method combined with
the rosette transform, some important historical patterns
are still out of reach. One example is given in Fig-
ure 14. This pattern is easy to construct from a tiling
of dodecagons and triangles using Kaplan and Salesin’s
Najm. Their technique provides an explicit parameteri-



zation of the motifs in the dodecagons, which they call
“extended rosettes”. It is tempting to assume that we can
arrive at the same pattern via two iterations of the rosette
transform on this tiling. Closer examination reveals that
where lines cross, they form angles of both30◦ and60◦.
Any inference-based representation of this pattern would
need either to allow multiple different contact angles, or
non-greedy choices in the inference algorithm. Either
way, more work is necessary to discover the principles
that govern these choices.

Hankin tilings are better suited than Najm tilings for
constructing some patterns. Bonner exhibits several re-
markable designs with unusual combinations of motifs;
Figure 15 shows a pattern with 11-pointed and 13-pointed
rosettes. These remarkable designs are possible because
the extra layer of irregular tiles can absorb the error when
reconciling the incompatible angles of the regular 11- and
13-gons. Note that the tiling that produces this design is
not the rosette transform of any tiling. Hankin tilings can
therefore be considered “primitive” in some cases. An-
other primitive Hankin tiling is the “Altair” tiling in the
bottom row of Figure 3. It would be interesting to exam-
ine what other unusual combinations of regular polygons
could be accommodated in a single pattern in this way,
and how to generate the associated Hankin tilings auto-
matically.

One other unexplored direction in this work is its
extension to non-Euclidean geometry, as demonstrated
by Kaplan and Salesin [18]. This extension would be
straightforward. The only change would be a general-
ization of the formula for scaling regular polygons in the
rosette transform. It should be possible to express a gen-
eral formula using the “absolute trigonometry” given in
the appendix of their paper.
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